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The fluorescence spectrum of cis-1-(2-naphthyl)-2-phen-
ylethene (c-NPE) was first reported by Hammond et al. for the
hexane solution.! The spectrum was highly unusual for a cis-
1,2-diarylethylene in that it exhibited a well-resolved vibronic
structure similar to that of the trans isomer (--NPE). Soon
thereafter, the fluorescence spectrum of ¢-NPE in a hydrocarbon
glass at —170 °C was shown to have the expected broad
structureless appearance.?? Since furthermore, the quantum yield
of this ¢-NPE emission, ¢s°, was shown to diminish sharply as
the temperature was raised,?™¢ it was concluded that the room
temperature emission' attributed to c-NPE was actually that of
the trans isomer.2 ¢-NPE contamination of the c-NPE samples
employed in the initial study was suspected.? We show here
that both of these early studies are correct, in large part, and
that the emission observed from ambient ¢-NPE solutions is
nearly exclusively due to adiabatic formation of '-NPEg*, the
excited singlet state of the more extended conformer of the trans
isomer, Scheme 1.

c-NPE, synthesized as previously described,! was purified
by repeated chromatography on alumina to >99.9% purity
(0.039% -NPE remained, GLC). Fluorescence measurements
were carried out at 30.0 °C in methylcyclohexane (MCH) using
a flow cell system as described for cis-stilbene.? Since a very
small number of fluorescence and/or fluorescence excitation
spectra were measured for each 250 mL solution, there was
negligible emission due to build-up of -NPE photoproduct. Such
build-up hampered studies in static cells. Fluorescence and
fluorescence excitation spectra for Ar-outgassed solutions are
compared with the fluorescence spectrum of +-NPEg* and the
absorption spectrum of ¢-NPE, respectively, in Figure 1. The
agreement between the two sets of spectra, though not exact, is
excellent. That the emission from ¢-NPE solutions cannot be
due to ¢-NPE impurity is unequivocally established by (i) better
resolved vibrational structure than for +NPE fluorescence
spectra because the latter include contributions of the broader
t-NPE, fluorescence,* (ii) agreement between ¢-NPE absorption
and fluorescence excitation spectra (since !c-NPE* does not
undergo adiabatic cis — trans isomerization, exact agreement
was not expected), (iii) linear dependence of fluorescence
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Figure 1. Absorption (€ya = 1.57 x 10* M~! cm™! at 302 nm) and
fluorescence spectra of c-NPE in MCH (—) and fluorescence excitation
spectrum of ¢-NPE and contributions of !-NPEg* and 'c-NPE* (x 10)
emissions in ¢-NPE fluorescence (— — —). All fluorescence spectra
are corrected for nonlinearity in instrumental response. Inset: loga-
rithmic plot of relative ¢-NPE fluorescence area vs relative incident
excitation intensity.

Scheme 1
1c.NPE4 1¢.NPEg' 't-NPEB'
[O]‘ hv H -hv hv “
¢-NPEy ¢-NPEg +-NPEg

intensity on incident excitation intensity (inset, Figure 1), and
(iv) the effect of O on spectral shape and intensity (see below).

Scrutiny of the fluorescence spectra in Figure 1 reveals a
slight deviation that becomes progressively more pronounced
as Ar-outgassing is replaced first by air and then by O..
Arbitrary subtraction of the fluorescence spectrum of -NPEg
from the emission spectra of ¢-NPE solutions gives less
structured difference spectra with further exaggerated deviation
from the +-NPEg fluorescence spectrum. Principal component
analysis with self-modeling (PCA-SM) treatment* of a matrix
consisting of the c-NPE emission spectra, the difference spectra,
and the spectrum of +-NPEg* reveals a two-component system
whose two pure component combination coefficient limits are
defined by the combination coefficients of the +~NPEg fluores-
cence spectrum and by the known Stern— Volmer constant® for
O3 quenching in MCH of '+-NPEg*, Ksv''B = 780 £ 20 M.
The new component is a noisy, structureless emission, Amax =
390 nm (Figure 1), consistent with an unknown combination
of the fluorescence spectra of 'c-NPEx* and !c-NPEg*. The
contribution of this emission for Ar-, air-, and O-saturated
solutions increases from 3.7 to 5.9 to 21.9% in that order,
reflecting its short lifetime. Measured against quinine bisulfate
as fluorescence standard,’ the fluorescence quantum yield of
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¢-NPE in O,-free MCH was decomposed to ¢¢8 = (1.86 +
0.05) x 1072 and ¢¢ = (5.2 £ 1.1) x 107* (spectra and quantum
yields are corrected for the small fluorescence contribution of
the +~NPE impurity). Since at least some of the incident light
is absorbed by ¢-NPE,4 (see Scheme 1), we estimate that no
less than 2% of !¢-NPEg* undergoes adiabatic isomerization
to '~-NPEg*, whose fluorescence quantum yield is known to
be 0.76.* Though not as efficient as adiabatic cis — trans
photoisomerization on the lowest singlet excited state surface
of more complex olefins,5# substitution of the 2-naphthyl group
for a phenyl group in stilbene leads to at least a 10-fold
enhancement in the adiabatic photoisomerization pathway for
one of the conformers only. Whether this reflects more
favorable energetics for the adiabatic pathway or a longer
lifetime at a roughly perpendicular geometry, 'p*, remains to
be established. The increase in the 'c-NPEg* —-!t-NPEg*
adiabatic pathway is all the more remarkable when one considers
that estimated activation energies*® for radiationless decay of
1:-NPEg* are significantly higher than those for the same process
in stilbene.'® Values of Ep® = 10.4 and ~7 kcal/mol have been
based on the temperature dependencies of fluorescence lifetimes®
and fluorescence quantum yields,?>* respectively, and a some-
what smaller value was based on the temperature dependence
of trans — cis quantum yields.2* Of course, the barrier that
would be experienced in the 'p* — lt* direction, assuming that
the twisted geometry represents a minimum on NPEg’s lowest
excited singlet state surface, would depend on the still unknown
relative energies of 'p* and 't*. These findings suggest that
the adiabatic cis — trans photoisomerization pathway, first
suggested by Olson,'! may be more common than is generally
assumed. For instance, the similar features in the fluorescence
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spectra of cis- and trans-1,2-di(1-naphthyl)ethene in 3-methyl-
pentane'? were also suggested to indicate the presence of the
trans isomer as an impurity in cis samples.? In light of the
present results, we shall investigate the possibility of adiabatic
l¢" — 1t* photoisomerization in that system as well.

Our ¢¢ value is consistent with Fischer’s values for hydro-
carbon media at much lower temperatures, for which the
adiabatic isomerization is completely suppressed.? An excellent
Arrhenius plot is obtained by assuming a limiting ¢ = 0.67
at very low temperature. It gives A = (3.32 &+ 0.32) x 10"
s~! and E, = 2.86 £ 0.02 kcal/mol as activation parameters,
suggesting that the torsional relaxation of !c-NPE* experiences
mainly the solvent’s barrier to viscous flow.3* A rough estimate
of 7y =4 % 1 ps for 'c-NPE* under our conditions can be based
on our ¢¢ value, in agreement with the insensitivity of this
fluorescence to [O3].

A relatively high efficiency of the known, conformer-specific
photocyclization of 'c-NPEx* 13 probably accounts for the
absence of cis — trans adiabatic photoisomerization in that
conformer. The sharp drop in cis — trans photoisomerization
quantum yields when ¢-NPE is excited at the red edge of its
absorption spectrum'?'* without diminution in dihydrophenan-
threne formation'* suggests that 'c-NPE4*, selectively formed
by excitation at longer wavelengths, undergoes only photocy-
clization. Previous results of photocyclization studies'® and
those from this study are summarized in Scheme 1. They
provide a striking example of the application of Havinga’'s
nonequilibration of excited rotamers (NEER) principle.!’
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